Ministry of Higher Education and Scientific Research
University of Baghdad
Institute of Laser for Postgraduate Studies

Effect of Temperature Variation on the Performance of Liquid-Filled Photonic

Bandgap Fiber

Abstract

A Thesis Submitted to the Institute of Laser for Postgraduate Studies, University of Baghdad in Partial Fulfillments for the Requirements for the Degree of Doctor of Philosophy in Laser/Electronics and Communication

By Tahreer Safa'a Mansour Al-Falah

B.Sc. 1998
M.Sc. 2001

Abstract

The present work focuses on the study of the tunability of HC-PCF infiltrated with liquids at different temperatures. The previous published works have been carried out using solid core PCF to build tunable filter. Infiltration of liquids in a HC-PCF means a refractive index contrast will change and consequently will affect the transmission properties of the fiber.

Five liquids (distilled water,n-hexane, methanol, ethanol and acetone) have been injected in the HC-PCF replacing the air. The linear transmission spectra for these liquids were measured using a spectrophotometer at different sets of temperatures. The non linear transmission spectra were also obtained for these liquids using a z-scan technique. The nonlinear refractive index $\left(\mathrm{n}_{2}\right)$, and the nonlinear absorption coefficient (β) were obtained for silica / Liquid at a set of temperatures. Heating of liquids was done by a heater wrapped around the fiber and a precise temperature controller builds with accuracy about ($\pm \boldsymbol{I C} \boldsymbol{C}^{o}$).

Three different laser wavelengths (Nd:YAG, He:Ne and green) have been utilized to modulate the spectral position of the bandgaps in a HC-PCF infiltrated with aforementioned liquids. The transmission spectra were recorded before and after filling the HC-PCF with all five liquids as a function of temperature. The change in transmission properties of the fiber is investigated by CCD camera.

We have studied near field patterns over the photonic bandgap wavelength range. The transmission bands of filled fibers have shifted to shorter wavelengths (blue shift) and then shifted to longer wavelength (red shift) when these liquids subjected to heat. For both (blue and red) shifts the results are consistent with scaling index law predictions.

The original pass band of the fiber extended over the region (1005 to $1165) \mathrm{nm}$. This bandgap shifted to about(564.865-660.414) nm, (567.99 $664.0711) \mathrm{nm}$, $(574.186-671.312) \mathrm{nm}$, and $(580.300-678.461) \mathrm{nm}$ for silica/distilled water , (435.173-504.454)nm, (443.220-513.782)nm , and (458.843-531.893)nm for silica/n-hexane, (500.523-580.208)nm, (509.845 - 591.014)nm and (527.920-611.968)nm, for silica/methanol , (497.397$576.585) \mathrm{nm},(507.274-588.034) \mathrm{nm}$ and $(526.389-610.192) \mathrm{nm}$ for silica/ethanol and (507.193 - 585.027)nm, (519.724 - 599.654)nm , (531.913-613.877)nm for silica/acetone with above temperature sets .

The thermal tuning sensitivity , 19cell HC-PCF after infiltration at different sets of temperatures, of the spectral position of the bandgap equal $0.32 \mathrm{~nm} / \mathrm{C}^{0}$ for distilled water, $0.80825 \mathrm{~nm} / \mathrm{C}^{0}$ for n -hexane, $1.87 \mathrm{~nm} / \mathrm{C}^{0}$ for methanol, $0.989 \mathrm{~nm} / \mathrm{C}^{0}$ for ethanol and finally $1.264 \mathrm{~nm} / \mathrm{C}^{0}$ for acetone. The minimum sensitive filter is achieved when filling all the holes of 19 cell HC-PCF with distilled water and maximum sensitivity when filling with methanol at different sets of temperature

وزارة التعليم العالي والبحث العلمي
جامعة بغداد
معهـ الليزر للارلمدات العليا

تأثنير تثيير درجة الحرارة على خصائص الليف البصري الفوتوني البلوري المملوء بالسائل

رسالة مقدمة إلى
معهـ اللثيزر للارلمات (العليا
جامعة بغداد
لاستكمـال متطلبات نيل درجة
دكتور ادفلسفة في الليزر/الكترونية و اتصالات

من قبل
تخ ريــر صفــا \& مـنـصو ر الــفــلاح

$$
\text { بـــاجـالـوتوريـو سر } 1998 \text { } 2001
$$

الخلاصة

ليف القلب المجوف البلوري قد جذب الانتباه في السنوات الاخيرة المنصرمة. الليف البلوري ينقل الضوء بطريقتين الاولى تعتمد على الانعكاسية الداخلية الكلية المحفزة و التي تشابه طريقة الانتقال الضوء في الليف البصري العادي و هذا النوع من الليف اللبوري يكون قلبه صلد و الثانية تحتمد على مبدا حزمة الفر اغ البلورية وهذا النوع من الليف يسمى بالقلب المجوف البلوري و الذي سدح لنا بحقن العديد من السوائل داخل القلب وفجوات القشرة وبذللك يتم بناء احهزة اليف المنغم بالسيطرة على طريقة تسخين هذه السو ائل.

يركز البحث الحالي على در اسة التنغيم في الليف البلور المجوف القلب المحقون بعدة سوائل مسخنة بمختلف درجات الحرارة والتي تعبر اول دراسة من نو عها في حقن الليف ذي القلب المجوف لكون الدر اسات السابقة قد حقنت الليف ذي القلب الصلا.عند الحقن تتغير معامل الانكسار والتي تؤثر بدور ها على خصـائص النفاذية لهذا الليف.

خمس سوائل استعملت في هذا البحث والتي هي لخمسة (الماء المقطر , الهكسـان المتسلسل ,
الميثانول , الايثانول والاسينون) و التي حقنت بالليف البصري باستبدالها فجوات الهواء فيه. وقد استخر ج طيف الامنصـاص الاخطي بواسطة تقنية المسح على المحور الثالث باستخدام
ليزر بمختلف درجات الحرارة باستخر اج معامل الانكسار اللاخطي ومعامل الامتصـاص اللا خطي . تغيير الطور للتضمبين الذاتي الطور. تسخبن السوائل تم من خلال مسخن ملفوف حول الليف وبناء منظومة تتحكم بدرجات الحر ارة بدقة . (\pm)

وقد تم انارة الليف بليزر النديميوم ياك ذي طاقة وليزر الهليوم نيون ذي طاقة 1mWW
وليزر اخضر ذي طاقة1mW في مر احل مختلفة من عمليات التعيير. طيف النفاذية لهذا الليف سجل قبل وبعد الحقن بهذه السوئل كدالة للحرارة و الذي فحص تغير خصـائص هذا الطيف بواسطة الـ كام يرا الحرارية.

حزمة النفاذية للليف ازيحت نحو الاطو ال الموجية القصيرة عند الحقن بهذه المو اد و عند تسخينها بعد ذلك ازيحت نحو الاطو ال الموجية الطويلة .حزمة المرور الاصلية للليف كانت -1005) (580.300-678.461), (574.186-671.312), (564.865-660.414) (1165) (لنومتر وازيحت الى (5)

حزمة النفاذية للليف ازيحت نحو الاطو ال الموجية القصبرة عند الحقن بهذه المواد و عند تسخينها بعد ذلك ازيحت نحو الاطو ال الموجية الطويلة .حزمة المرور الاصلية للليف كانت-1005) (580.300-678.461), (574.186-671.312), (564.865-660.414) (1165) (لنومتر وازيحت الى (5)
 (443.220-513.782 (531.893) (458.843)) نانومترفي حالة السليكا /هكسان والى((580.208-500.523),(511.968 - 591.014 (527.920) (509.845)) نانومتر في حالة السبلكا/ميثانول وفي حالة/السليكا / الايثانول ازيحت الى / () نانومتر والسليكا (526.389 - 610.192),(507.274 - 588.034), (497.397-576.585)) اسيتون كانت الازاحة((585.027-531.913-613.877), (519.724-599.654) , 507.193 (5) (5)) لمختلف درجات الحرارة .

واخيرا استخرجت حساسية التنغيم للمرشح الطيفي المنغم والذي حقن بالسو ائل الخمسة آنفة 0.80825 nm/Co , الذكر والتي كانت كالآتي اللة 1.264 nm/C ${ }^{0}$, سليكا/هكسان, 1.87 nm/C 0.989 nm/C ${ }^{0}$ سليكا / الايثانولاميثانول, سليكا / اسيتون وكانت اقل حساسية للمرشح في حالة الحقن بالماء المقطر واعلى شيء في حالة الحقن بالميثانول لمختلف درجات الحرارة.

